Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurophotonics ; 11(2): 024203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348359

RESUMO

The use of bioluminescence as a reporter for physiology in neuroscience is as old as the discovery of the calcium-dependent photon emission of aequorin. Over the years, luciferases have been largely replaced by fluorescent reporters, but recently, the field has seen a renaissance of bioluminescent probes, catalyzed by unique developments in imaging technology, bioengineering, and biochemistry to produce luciferases with previously unseen colors and intensity. This is not surprising as the advantages of bioluminescence make luciferases very attractive for noninvasive, longitudinal in vivo observations without the need of an excitation light source. Here, we review how the development of dedicated and specific sensor-luciferases afforded, among others, transcranial imaging of calcium and neurotransmitters, or cellular metabolites and physical quantities such as forces and membrane voltage. Further, the increased versatility and light output of luciferases have paved the way for a new field of functional bioluminescence optogenetics, in which the photon emission of the luciferase is coupled to the gating of a photosensor, e.g., a channelrhodopsin and we review how they have been successfully used to engineer synthetic neuronal connections. Finally, we provide a primer to consider important factors in setting up functional bioluminescence experiments, with a particular focus on the genetic model Caenorhabditis elegans, and discuss the leading challenges that the field needs to overcome to regain a competitive advantage over fluorescence modalities. Together, our paper caters to experienced users of bioluminescence as well as novices who would like to experience the advantages of luciferases in their own hand.

2.
Nat Cell Biol ; 25(11): 1590-1599, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857834

RESUMO

A growing body of work suggests that the material properties of biomolecular condensates ensuing from liquid-liquid phase separation change with time. How this aging process is controlled and whether the condensates with distinct material properties can have different biological functions is currently unknown. Using Caenorhabditis elegans as a model, we show that MEC-2/stomatin undergoes a rigidity phase transition from fluid-like to solid-like condensates that facilitate transport and mechanotransduction, respectively. This switch is triggered by the interaction between the SH3 domain of UNC-89 (titin/obscurin) and MEC-2. We suggest that this rigidity phase transition has a physiological role in frequency-dependent force transmission in mechanosensitive neurons during body wall touch. Our data demonstrate a function for the liquid and solid phases of MEC-2/stomatin condensates in facilitating transport or mechanotransduction, and a previously unidentified role for titin homologues in neurons.


Assuntos
Proteínas de Caenorhabditis elegans , Tato , Animais , Tato/fisiologia , Proteínas de Caenorhabditis elegans/genética , Mecanorreceptores/fisiologia , Conectina , Mecanotransdução Celular/fisiologia , Caenorhabditis elegans/genética , Neurônios , Proteínas de Membrana/fisiologia
3.
Nat Methods ; 20(5): 761-769, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024651

RESUMO

Neuronal computation is achieved through connections of individual neurons into a larger network. To expand the repertoire of endogenous cellular communication, we developed a synthetic, photon-assisted synaptic transmission (PhAST) system. PhAST is based on luciferases and channelrhodopsins that enable the transmission of a neuronal state across space, using photons as neurotransmitters. PhAST overcomes synaptic barriers and rescues the behavioral deficit of a glutamate mutant with conditional, calcium-triggered photon emission between two neurons of the Caenorhabditis elegans nociceptive avoidance circuit. To demonstrate versatility and flexibility, we generated de novo synaptic transmission between two unconnected cells in a sexually dimorphic neuronal circuit, suppressed endogenous nocifensive response through activation of an anion channelrhodopsin and switched attractive to aversive behavior in an olfactory circuit. Finally, we applied PhAST to dissect the calcium dynamics of the temporal pattern generator in a motor circuit for ovipositioning. In summary, we established photon-based synaptic transmission that facilitates the modification of animal behavior.


Assuntos
Cálcio , Fótons , Animais , Neurônios/fisiologia , Transmissão Sináptica , Caenorhabditis elegans/fisiologia
4.
G3 (Bethesda) ; 13(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36805659

RESUMO

The stable incorporation of transgenes and recombinant DNA material into the host genome is a bottleneck in many bioengineering applications. Due to the low efficiency, identifying the transgenic animals is often a needle in the haystack. Thus, optimal conditions require efficient screening procedures, but also known and safe landing sites that do not interfere with host expression, low input material and strong expression from the new locus. Here, we leverage an existing library of ≈300 different loci coding for fluorescent markers that are distributed over all 6 chromosomes in Caenorhabditis elegans as safe harbors for versatile transgene integration sites using CRISPR/Cas9. We demonstrated that a single crRNA was sufficient for cleavage of the target region and integration of the transgene of interest, which can be easily followed by loss of the fluorescent marker. The same loci can also be used for extrachromosomal landing sites and as co-CRISPR markers without affecting body morphology or animal behavior. Thus, our method overcomes the uncertainty of transgene location during random mutagenesis, facilitates easy screening through fluorescence interference and can be used as co-CRISPR markers without further influence in phenotypes.


Assuntos
Cromossomos , Genoma , Animais , Transgenes , Animais Geneticamente Modificados , Fenótipo , Sistemas CRISPR-Cas
5.
Commun Biol ; 5(1): 1330, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463346

RESUMO

Bioluminescence microscopy is an appealing alternative to fluorescence microscopy, because it does not depend on external illumination, and consequently does neither produce spurious background autofluorescence, nor perturb intrinsically photosensitive processes in living cells and animals. The low photon emission of known luciferases, however, demands long exposure times that are prohibitive for imaging fast biological dynamics. To increase the versatility of bioluminescence microscopy, we present an improved low-light microscope in combination with deep learning methods to image extremely photon-starved samples enabling subsecond exposures for timelapse and volumetric imaging. We apply our method to image subcellular dynamics in mouse embryonic stem cells, epithelial morphology during zebrafish development, and DAF-16 FoxO transcription factor shuttling from the cytoplasm to the nucleus under external stress. Finally, we concatenate neural networks for denoising and light-field deconvolution to resolve intracellular calcium dynamics in three dimensions of freely moving Caenorhabditis elegans.


Assuntos
Aprendizado Profundo , Animais , Camundongos , Peixe-Zebra , Citoplasma , Núcleo Celular , Microscopia de Fluorescência , Caenorhabditis elegans
6.
J Clin Endocrinol Metab ; 107(3): 668-684, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34718610

RESUMO

CONTEXT: Genes causing familial forms of diabetes mellitus are only partially known. OBJECTIVE: We set out to identify the genetic cause of hyperglycemia in multigenerational families with an apparent autosomal dominant form of adult-onset diabetes not due to mutations in known monogenic diabetes genes. METHODS: Existing whole-exome sequencing (WES) data were used to identify exonic variants segregating with diabetes in 60 families from the United States and Italy. Functional studies were carried out in vitro (transduced MIN6-K8 cells) and in vivo (Caenorhabditis elegans) to assess the diabetogenic potential of 2 variants in the malate dehydrogenase 2 (MDH2) gene linked with hyperglycemia in 2 of the families. RESULTS: A very rare mutation (p.Arg52Cys) in MDH2 strongly segregated with hyperglycemia in 1 family from the United States. An infrequent MDH2 missense variant (p.Val160Met) also showed disease cosegregation in a family from Italy, although with reduced penetrance. In silico, both Arg52Cys and Val160Met were shown to affect MDH2 protein structure and function. In transfected HepG2 cells, both variants significantly increased MDH2 enzymatic activity, thereby decreasing the NAD+/NADH ratio-a change known to affect insulin signaling and secretion. Stable expression of human wild-type MDH2 in MIN6-K8 cell lines enhanced glucose- and GLP-1-stimulated insulin secretion. This effect was blunted by the Cys52 or Met160 substitutions. Nematodes carrying equivalent changes at the orthologous positions of the mdh-2 gene showed impaired glucose-stimulated insulin secretion. CONCLUSION: Our findings suggest a central role of MDH2 in human glucose homeostasis and indicate that gain of function variants in this gene may be involved in the etiology of familial forms of diabetes.


Assuntos
Glicemia/metabolismo , Hiperglicemia/genética , Malato Desidrogenase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Animais Geneticamente Modificados , Glicemia/análise , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Análise Mutacional de DNA , Feminino , Mutação com Ganho de Função , Humanos , Hiperglicemia/sangue , Insulina/análise , Insulina/metabolismo , Secreção de Insulina/genética , Ilhotas Pancreáticas , Malato Desidrogenase/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequenciamento do Exoma
7.
Sci Adv ; 7(38): eabg4617, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533987

RESUMO

A repetitive gait cycle is an archetypical component within the behavioral repertoire of many animals including humans. It originates from mechanical feedback within proprioceptors to adjust the motor program during locomotion and thus leads to a periodic orbit in a low-dimensional space. Here, we investigate the mechanics, molecules, and neurons responsible for proprioception in Caenorhabditis elegans to gain insight into how mechanosensation shapes the orbital trajectory to a well-defined limit cycle. We used genome editing, force spectroscopy, and multiscale modeling and found that alternating tension and compression with the spectrin network of a single proprioceptor encodes body posture and informs TRP-4/NOMPC and TWK-16/TREK2 homologs of mechanosensitive ion channels during locomotion. In contrast to a widely accepted model of proprioceptive "stretch" reception, we found that proprioceptors activated locally under compressive stresses in-vivo and in-vitro and propose that this property leads to compartmentalized activity within long axons delimited by curvature-dependent mechanical stresses.

8.
Sci Rep ; 10(1): 16153, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999373

RESUMO

Mammalian IκB proteins (IκBs) exert their main function as negative regulators of NF-κB, a central signaling pathway controlling immunity and inflammation. An alternative chromatin role for IκBs has been shown to affect stemness and cell differentiation. However, the involvement of NF-κB in this function has not been excluded. NFKI-1 and IKB-1 are IκB homologs in Caenorhabditis elegans, which lacks NF-κB nuclear effectors. We found that nfki-1 and ikb-1 mutants display developmental defects that phenocopy mutations in Polycomb and UTX-1 histone demethylase, suggesting a role for C. elegans IκBs in chromatin regulation. Further supporting this possibility (1) we detected NFKI-1 in the nucleus of cells; (2) NFKI-1 and IKB-1 bind to histones and Polycomb proteins, (3) and associate with chromatin in vivo, and (4) mutations in nfki-1 and ikb-1 alter chromatin marks. Based on these results, we propose that ancestral IκB inhibitors modulate Polycomb activity at specific gene subsets with an impact on development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Proteínas I-kappa B/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/fisiologia , Proteínas I-kappa B/genética , Proteínas do Grupo Polycomb/genética
9.
Neurobiol Aging ; 82: 60-68, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31404721

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder involving α-synuclein (α-syn) aggregation, oxidative stress, dysregulation of redox metal homeostasis, and neurotoxicity. Different phenolic compounds with known antioxidant or antichelating properties have been shown to also interfere with aggregation of amyloid proteins and modulate intracellular signaling pathways. The present study aims to investigate for the first time the effect of tyrosol (TYR), a simple phenol present in extra-virgin olive oil, on α-syn aggregation in a Caenorhabditis elegans model of PD and evaluate its potential to prevent α-syn toxicity, neurodegeneration, and oxidative stress in this model organism. Our results show that TYR is effective in reducing α-syn inclusions, resulting in a lower toxicity and extended life span of treated nematodes. Moreover, TYR delayed α-syn-dependent degeneration of dopaminergic neurons in vivo. TYR treatment also reduced reactive oxygen species level and promoted the expression of specific chaperones and antioxidant enzymes. Overall, our study puts into perspective TYR potential to be considered as nutraceutical that targets pivotal causal factors in PD.


Assuntos
Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Azeite de Oliva/administração & dosagem , Transtornos Parkinsonianos/dietoterapia , Transtornos Parkinsonianos/patologia , Álcool Feniletílico/análogos & derivados , Animais , Animais Geneticamente Modificados , Antioxidantes/administração & dosagem , Caenorhabditis elegans , Suplementos Nutricionais , Degeneração Neural/dietoterapia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Transtornos Parkinsonianos/metabolismo , Álcool Feniletílico/administração & dosagem , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/metabolismo
10.
Nat Commun ; 10(1): 907, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796228

RESUMO

Manipulation of neuronal activity using two-photon excitation of azobenzene photoswitches with near-infrared light has been recently demonstrated, but their practical use in neuronal tissue to photostimulate individual neurons with three-dimensional precision has been hampered by firstly, the low efficacy and reliability of NIR-induced azobenzene photoisomerization compared to one-photon excitation, and secondly, the short cis state lifetime of the two-photon responsive azo switches. Here we report the rational design based on theoretical calculations and the synthesis of azobenzene photoswitches endowed with both high two-photon absorption cross section and slow thermal back-isomerization. These compounds provide optimized and sustained two-photon neuronal stimulation both in light-scattering brain tissue and in Caenorhabditis elegans nematodes, displaying photoresponse intensities that are comparable to those achieved under one-photon excitation. This finding opens the way to use both genetically targeted and pharmacologically selective azobenzene photoswitches to dissect intact neuronal circuits in three dimensions.


Assuntos
Compostos Azo/química , Caenorhabditis elegans/fisiologia , Raios Infravermelhos , Neurônios/metabolismo , Processos Fotoquímicos , Animais , Canais de Cálcio/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Fótons
11.
Behav Genet ; 47(6): 596-608, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28879499

RESUMO

Neurexins and neuroligins are neuronal membrane adhesion molecules that have been involved in neuropsychiatric and neurodevelopmental disorders. The nrx-1 and nlg-1 genes of Caenorhabditis elegans encode NRX-1 and NLG-1, orthologue proteins of human neurexins and neuroligins, respectively. Dopaminergic and serotoninergic signalling control the locomotory rate of the nematode. When well-fed animals are transferred to a plate with food (bacterial lawn), they reduce the locomotory rate. This behavior, which depends on dopamine, is known as basal slowing response (BSR). Alternatively, when food-deprived animals are moved to a plate with a bacterial lawn, further decrease their locomotory rate. This behavior, known as enhanced slowing response (ESR), is serotonin dependent. C. elegans nlg-1-deficient mutants are impaired in BSR and ESR. Here we report that nrx-1-deficient mutants were defective in ESR, but not in BSR. The nrx-1;nlg-1 double mutant was impaired in both behaviors. Interestingly, the nlg-1 mutants upregulate the expression of comt-4 which encodes an enzyme with putative catechol-O-methyltransferase activity involved in dopamine degradation. Our study also shows that comt-4(RNAi) in nlg-1-deficient mutants rescues the wild type phenotypes of BSR and ESR. On the other hand, comt-4(RNAi) in nlg-1-deficient mutants also recovers, at least partially, the gentle touch response and the pharyngeal pumping rate that were impaired in these mutants. These latter behaviors are dopamine and serotonin dependent, respectively. Based on these results we propose a model for the neuroligin function in modulating the dopamine-dependent locomotory behavior in the nematode.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Catecol O-Metiltransferase/fisiologia , Dopamina/metabolismo , Locomoção/genética , Locomoção/fisiologia , Interferência de RNA , Serotonina/metabolismo
12.
Genetics ; 202(3): 961-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26739451

RESUMO

SWI/SNF ATP-dependent chromatin-remodeling complexes have been related to several cellular processes such as transcription, regulation of chromosomal stability, and DNA repair. The Caenorhabditis elegans gene ham-3 (also known as swsn-2.1) and its paralog swsn-2.2 encode accessory subunits of SWI/SNF complexes. Using RNA interference (RNAi) assays and diverse alleles we investigated whether ham-3 and swsn-2.2 have different functions during C. elegans development since they encode proteins that are probably mutually exclusive in a given SWI/SNF complex. We found that ham-3 and swsn-2.2 display similar functions in vulva specification, germline development, and intestinal cell proliferation, but have distinct roles in embryonic development. Accordingly, we detected functional redundancy in some developmental processes and demonstrated by RNA sequencing of RNAi-treated L4 animals that ham-3 and swsn-2.2 regulate the expression of a common subset of genes but also have specific targets. Cell lineage analyses in the embryo revealed hyper-proliferation of intestinal cells in ham-3 null mutants whereas swsn-2.2 is required for proper cell divisions. Using a proteomic approach, we identified SWSN-2.2-interacting proteins needed for early cell divisions, such as SAO-1 and ATX-2, and also nuclear envelope proteins such as MEL-28. swsn-2.2 mutants phenocopy mel-28 loss-of-function, and we observed that SWSN-2.2 and MEL-28 colocalize in mitotic and meiotic chromosomes. Moreover, we demonstrated that SWSN-2.2 is required for correct chromosome segregation and nuclear reassembly after mitosis including recruitment of MEL-28 to the nuclear periphery.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Linhagem da Célula/genética , Montagem e Desmontagem da Cromatina , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alelos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Segregação de Cromossomos , Proteínas de Ligação a DNA , Desenvolvimento Embrionário/genética , Mitose , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteômica , Interferência de RNA , Transcriptoma
13.
Nat Med ; 22(1): 91-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26692333

RESUMO

AIRAPL (arsenite-inducible RNA-associated protein-like) is an evolutionarily conserved regulator of cellular proteostasis linked to longevity in nematodes, but its biological function in mammals is unknown. We show herein that AIRAPL-deficient mice develop a fully-penetrant myeloproliferative neoplastic process. Proteomic analysis of AIRAPL-deficient mice revealed that this protein exerts its antineoplastic function through the regulation of the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway. We demonstrate that AIRAPL interacts with newly synthesized insulin-related growth factor-1 receptor (IGF1R) polypeptides, promoting their ubiquitination and proteasome-mediated degradation. Accordingly, genetic and pharmacological IGF1R inhibitory strategies prevent the hematological disease found in AIRAPL-deficient mice as well as that in mice carrying the Jak2(V617F) mutation, thereby demonstrating the causal involvement of this pathway in the pathogenesis of myeloproliferative neoplasms. Consistent with its proposed role as a tumor suppressor of myeloid transformation, AIRAPL expression is widely abrogated in human myeloproliferative disorders. Collectively, these findings support the oncogenic relevance of proteostasis deregulation in hematopoietic cells, and they unveil novel therapeutic targets for these frequent hematological neoplasias.


Assuntos
Proteínas de Transporte/genética , Fator de Crescimento Insulin-Like I/metabolismo , Transtornos Mieloproliferativos/genética , Proteínas de Ligação a RNA/genética , Receptor IGF Tipo 1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Western Blotting , Sistemas CRISPR-Cas , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Transtornos Mieloproliferativos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Deficiências na Proteostase , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Insulina/genética , Transdução de Sinais , Ubiquitinação , Dedos de Zinco/genética
14.
RNA ; 21(12): 2119-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26490224

RESUMO

Retinitis pigmentosa (RP) is a rare genetic disease that causes gradual blindness through retinal degeneration. Intriguingly, seven of the 24 genes identified as responsible for the autosomal-dominant form (adRP) are ubiquitous spliceosome components whose impairment causes disease only in the retina. The fact that these proteins are essential in all organisms hampers genetic, genomic, and physiological studies, but we addressed these difficulties by using RNAi in Caenorhabditis elegans. Our study of worm phenotypes produced by RNAi of splicing-related adRP (s-adRP) genes functionally distinguishes between components of U4 and U5 snRNP complexes, because knockdown of U5 proteins produces a stronger phenotype. RNA-seq analyses of worms where s-adRP genes were partially inactivated by RNAi, revealed mild intron retention in developing animals but not in adults, suggesting a positive correlation between intron retention and transcriptional activity. Interestingly, RNAi of s-adRP genes produces an increase in the expression of atl-1 (homolog of human ATR), which is normally activated in response to replicative stress and certain DNA-damaging agents. The up-regulation of atl-1 correlates with the ectopic expression of the pro-apoptotic gene egl-1 and apoptosis in hypodermal cells, which produce the cuticle, but not in other cell types. Our model in C. elegans resembles s-adRP in two aspects: The phenotype caused by global knockdown of s-adRP genes is cell type-specific and associated with high transcriptional activity. Finally, along with a reduced production of mature transcripts, we propose a model in which the retina-specific cell death in s-adRP patients can be induced through genomic instability.


Assuntos
Apoptose , Retinose Pigmentar/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Genes Dominantes , Especificidade de Órgãos , Interferência de RNA , Splicing de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Retinose Pigmentar/patologia , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U5/genética
15.
RNA ; 21(9): 1544-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26150554

RESUMO

Genes coding for members of the Sm-like (LSm) protein family are conserved through evolution from prokaryotes to humans. These proteins have been described as forming homo- or heterocomplexes implicated in a broad range of RNA-related functions. To date, the nuclear LSm2-8 and the cytoplasmic LSm1-7 heteroheptamers are the best characterized complexes in eukaryotes. Through a comprehensive functional study of the LSm family members, we found that lsm-1 and lsm-3 are not essential for C. elegans viability, but their perturbation, by RNAi or mutations, produces defects in development, reproduction, and motility. We further investigated the function of lsm-1, which encodes the distinctive protein of the cytoplasmic complex. RNA-seq analysis of lsm-1 mutants suggests that they have impaired Insulin/IGF-1 signaling (IIS), which is conserved in metazoans and involved in the response to various types of stress through the action of the FOXO transcription factor DAF-16. Further analysis using a DAF-16::GFP reporter indicated that heat stress-induced translocation of DAF-16 to the nuclei is dependent on lsm-1. Consistent with this, we observed that lsm-1 mutants display heightened sensitivity to thermal stress and starvation, while overexpression of lsm-1 has the opposite effect. We also observed that under stress, cytoplasmic LSm proteins aggregate into granules in an LSM-1-dependent manner. Moreover, we found that lsm-1 and lsm-3 are required for other processes regulated by the IIS pathway, such as aging and pathogen resistance.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Sequência Conservada , Fatores de Transcrição Forkhead/metabolismo , Genes Essenciais , Temperatura Alta , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Mutação , Transdução de Sinais , Estresse Fisiológico
16.
PLoS Genet ; 9(6): e1003543, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23754964

RESUMO

Protein components of the spliceosome are highly conserved in eukaryotes and can influence several steps of the gene expression process. RSR-2, the Caenorhabditis elegans ortholog of the human spliceosomal protein SRm300/SRRM2, is essential for viability, in contrast to the yeast ortholog Cwc21p. We took advantage of mutants and RNA interference (RNAi) to study rsr-2 functions in C. elegans, and through genetic epistasis analysis found that rsr-2 is within the germline sex determination pathway. Intriguingly, transcriptome analyses of rsr-2(RNAi) animals did not reveal appreciable splicing defects but instead a slight global decrease in transcript levels. We further investigated this effect in transcription and observed that RSR-2 colocalizes with DNA in germline nuclei and coprecipitates with chromatin, displaying a ChIP-Seq profile similar to that obtained for the RNA Polymerase II (RNAPII). Consistent with a novel transcription function we demonstrate that the recruitment of RSR-2 to chromatin is splicing-independent and that RSR-2 interacts with RNAPII and affects RNAPII phosphorylation states. Proteomic analyses identified proteins associated with RSR-2 that are involved in different gene expression steps, including RNA metabolism and transcription with PRP-8 and PRP-19 being the strongest interacting partners. PRP-8 is a core component of the spliceosome and PRP-19 is the core component of the PRP19 complex, which interacts with RNAPII and is necessary for full transcriptional activity. Taken together, our study proposes that RSR-2 is a multifunctional protein whose role in transcription influences C. elegans development.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Cromatina/genética , Proteínas de Ligação a DNA/genética , Spliceossomos/genética , Transcrição Gênica , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Células Germinativas , Humanos , Fosforilação , RNA Polimerase II , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Homologia de Sequência de Aminoácidos , Spliceossomos/metabolismo
17.
J Vis Exp ; (64): e4019, 2012 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22710399

RESUMO

Research into the molecular and developmental biology of the nematode Caenorhabditis elegans was begun in the early seventies by Sydney Brenner and it has since been used extensively as a model organism. C. elegans possesses key attributes such as simplicity, transparency and short life cycle that have made it a suitable experimental system for fundamental biological studies for many years. Discoveries in this nematode have broad implications because many cellular and molecular processes that control animal development are evolutionary conserved. C. elegans life cycle goes through an embryonic stage and four larval stages before animals reach adulthood. Development can take 2 to 4 days depending on the temperature. In each of the stages several characteristic traits can be observed. The knowledge of its complete cell lineage together with the deep annotation of its genome turn this nematode into a great model in fields as diverse as the neurobiology, aging, stem cell biology and germ line biology. An additional feature that makes C. elegans an attractive model to work with is the possibility of obtaining populations of worms synchronized at a specific stage through a relatively easy protocol. The ease of maintaining and propagating this nematode added to the possibility of synchronization provide a powerful tool to obtain large amounts of worms, which can be used for a wide variety of small or high-throughput experiments such as RNAi screens, microarrays, massive sequencing, immunoblot or in situ hybridization, among others. Because of its transparency, C. elegans structures can be distinguished under the microscope using Differential Interference Contrast microscopy, also known as Nomarski microscopy. The use of a fluorescent DNA binder, DAPI (4',6-diamidino-2-phenylindole), for instance, can lead to the specific identification and localization of individual cells, as well as subcellular structures/defects associated to them.


Assuntos
Caenorhabditis elegans/fisiologia , Técnicas Citológicas/métodos , Animais , Caenorhabditis elegans/crescimento & desenvolvimento
18.
J Cell Sci ; 125(Pt 7): 1716-26, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22328524

RESUMO

14-3-3 proteins have been extensively studied in organisms ranging from yeast to mammals and are associated with multiple roles, including fundamental processes such as the cell cycle, apoptosis and the stress response, to diseases such as cancer. In Caenorhabditis elegans, there are two 14-3-3 genes, ftt-2 and par-5. ftt-2 is expressed only in somatic lineages, whereas par-5 expression is detected in both soma and germline. During early embryonic development, par-5 is necessary to establish cell polarity. Although it is known that par-5 inactivation results in sterility, the role of this gene in germline development is poorly characterized. In the present study, we used a par-5 mutation and RNA interference to characterize par-5 functions in the germline. The lack of par-5 in germ cells caused cell cycle deregulation, the accumulation of endogenous DNA damage and genomic instability. Moreover, par-5 was required for checkpoint-induced cell cycle arrest in response to DNA-damaging agents. We propose a model in which PAR-5 regulates CDK-1 phosphorylation to prevent premature mitotic entry. This study opens a new path to investigate the mechanisms of 14-3-3 functions, which are not only essential for C. elegans development, but have also been shown to be altered in human diseases.


Assuntos
Proteínas 14-3-3/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Dano ao DNA , Células Germinativas/metabolismo , Proteínas 14-3-3/genética , Animais , Caenorhabditis elegans/citologia , Ciclo Celular , Células Germinativas/citologia
19.
Breast Cancer Res ; 13(2): R40, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21466675

RESUMO

INTRODUCTION: Proteins encoded by Fanconi anemia (FA) and/or breast cancer (BrCa) susceptibility genes cooperate in a common DNA damage repair signaling pathway. To gain deeper insight into this pathway and its influence on cancer risk, we searched for novel components through protein physical interaction screens. METHODS: Protein physical interactions were screened using the yeast two-hybrid system. Co-affinity purifications and endogenous co-immunoprecipitation assays were performed to corroborate interactions. Biochemical and functional assays in human, mouse and Caenorhabditis elegans models were carried out to characterize pathway components. Thirteen FANCD2-monoubiquitinylation-positive FA cell lines excluded for genetic defects in the downstream pathway components and 300 familial BrCa patients negative for BRCA1/2 mutations were analyzed for genetic mutations. Common genetic variants were genotyped in 9,573 BRCA1/2 mutation carriers for associations with BrCa risk. RESULTS: A previously identified co-purifying protein with PALB2 was identified, MRG15 (MORF4L1 gene). Results in human, mouse and C. elegans models delineate molecular and functional relationships with BRCA2, PALB2, RAD51 and RPA1 that suggest a role for MRG15 in the repair of DNA double-strand breaks. Mrg15-deficient murine embryonic fibroblasts showed moderate sensitivity to γ-irradiation relative to controls and reduced formation of Rad51 nuclear foci. Examination of mutants of MRG15 and BRCA2 C. elegans orthologs revealed phenocopy by accumulation of RPA-1 (human RPA1) nuclear foci and aberrant chromosomal compactions in meiotic cells. However, no alterations or mutations were identified for MRG15/MORF4L1 in unclassified FA patients and BrCa familial cases. Finally, no significant associations between common MORF4L1 variants and BrCa risk for BRCA1 or BRCA2 mutation carriers were identified: rs7164529, Ptrend = 0.45 and 0.05, P2df = 0.51 and 0.14, respectively; and rs10519219, Ptrend = 0.92 and 0.72, P2df = 0.76 and 0.07, respectively. CONCLUSIONS: While the present study expands on the role of MRG15 in the control of genomic stability, weak associations cannot be ruled out for potential low-penetrance variants at MORF4L1 and BrCa risk among BRCA2 mutation carriers.


Assuntos
Neoplasias da Mama/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Neoplasias da Mama/metabolismo , Caenorhabditis elegans , Linhagem Celular , Dano ao DNA , Reparo do DNA , Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação N da Anemia de Fanconi , Feminino , Genes BRCA1 , Genes BRCA2 , Predisposição Genética para Doença , Humanos , Camundongos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Fatores de Risco , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Técnicas do Sistema de Duplo-Híbrido
20.
Biochem J ; 435(3): 563-8, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21361876

RESUMO

Fibronectins are cell-secreted glycoproteins that modulate cell attachment, spreading, migration, morphology, differentiation and oncogenic transformation. Fibronectin expression is activated during EMT (epithelial-mesenchymal transition) and is a hallmark of mesenchymal cells. It is shown in the present study that a transcription factor previously unrelated with EMT, TFCP2c/LSF/LBP-1c, was translocated to the nucleus and bound to the fibronectin promoter upon EMT induction by Snail1. Consequently, the interference of TFCP2c/LSF/LBP-1c's activity prevented fibronectin expression. Moreover, TFCP2c/LSF/LBP-1c was detected in nuclei of embryonic dermal mesenchymal cells adjacent to the hair bud, a cell population that expresses endogenous nuclear Snail1 and fibronectin. Therefore we indicate a new molecular role for TFCP2c/LSF/LBP-1c in fibronectin expression.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibronectinas/metabolismo , Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Embrião de Mamíferos/metabolismo , Fibronectinas/genética , Humanos , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico/fisiologia , Fatores de Transcrição da Família Snail
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA